8 Dopo aver bilanciato la reazione:

..... $NaNO_3 + H_3PO_4 \longrightarrow Na_3PO_4 + HNO_3$ calcola quante moli di acido nitrico HNO_3 si ottengono facendo reagire 27 g di acido ortofosforico H_3PO_4 .

9 Dopo aver bilanciato la reazione:

..... $Be(NO_3)_2 + H_2SO_3 \longrightarrow BeSO_3 + HNO_3$ calcola quanti grammi di HNO $_3$ si formano a partire da 3 mol di acido solforoso.

10 Dopo aver bilanciato la reazione:

..... $Cu(NO_3)_2 + Na_2S \longrightarrow CuS + NaNO_3$ calcola quanti grammi di Na,S sono necessari per produrre 450 g di NaNO_3.

- Riscaldando il carbonato di calcio se ne provoca la decomposizione, secondo la reazione: CaCO₃ -> CaO + CO₂
 Calcola la quantità in grammi di CaCO₃ necessaria per ottenere 33,6 L di CO₂ in STP.
 (Ricorda che in condizioni standard 1 mole di un gas occupa un volume di 22,4 L)
- La reazione di decomposizione del clorato di potassio è la seguente:
 2 KClO₃ → 2 KCl + 3O₂
 Determina quanti grammi di ossigeno si ottengono da 35,6 g di CaCO₃.
- 13 Calcola quanti grammi di KCl si ottengono da 38,5 g di AlCl₃ secondo la reazione da bilanciare:

 $K_2S + AlCl_3 \longrightarrow Al_2S_3 + KCl$

14 Calcola quanti grammi di H_3PO_4 reagiscono con 158 g di $CaCl_2$ secondo la reazione da bilanciare:

 \dots $H_3PO_4 + \dots CaCl_2 \longrightarrow \dots HCl \dots Ca_3(PO_4)_2$

Calcola quanti grammi di $\mathrm{HClO_4}$ sono necessari per ottenere 100 g di $\mathrm{Al(ClO_4)_3}$ secondo la reazione da bilanciare:

 $..... \ \operatorname{HClO}_4 \ + \ \ \operatorname{Al(OH)}_3 \ \longrightarrow \ \ \operatorname{Al(ClO}_4)_3 \ + \ \ \operatorname{H}_2\operatorname{O}$

16 Calcola quanti grammi di ${\rm Al_2(SO_4)_3}$ si formano da 136 g di ${\rm Al(OH)_3}$ secondo la reazione da bilanciare:

 $H_2SO_4 + Al(OH)_3 \longrightarrow Al_2(SO_4)_3 + H_2O$

Reagente limitante e reagente in eccesso

Dissociazione ionica

Solubilità dei composti ionici in acqua

Reazioni di precipitazione

Il bilanciamento delle reazioni di ossido-riduzione

Il bilanciamento di reazioni di ossido-riduzione in ambiente acido o basico

L'elettrochimica: le pile e l'elettrolisi

La forza elettromotrice di una pila

La termodinamica